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Problem:
With the emergence of new technologies, how

can we efficiently adaptour infrastructure
without rebuildingor redesigning from scratch?
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Data:
Municipal, state, and federal entities are
collecting and exposing data on our civil
infrastructure

Problem:
With the emergence of new technologies, how
can we efficiently adaptour infrastructure
without rebuildingor redesigning from scratch?
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Data:
Municipal, state, and federal entities are

Problem:
With the emergence of new technologies, how
can we efficiently adaptour infrastructure
without rebuildingor redesigning from scratch?

collecting and exposing data on our civil
infrastructure
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( ( Solution:

Apply statistical and machine learning g \

techniques to improve existing .
engineered solutions
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Case studies in combining civil
data with statistical and machine
learning

-Lots of opportunity
-Growing # of examples where lack of domain
knowledge leads to inactionable solutions in
high reliability areas
-Immature use in control tasks

06.05433v] [c¢s.CY] 10 Jun 2019

Tackling Climate Change with Machine Learning
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Abstract

Clhimate change s ooe of the greaten challenges facing humangy, sod we. as muchene leaming ex-
porn, may wonder how we can belp Hare we doscribe how machine leaming can be 2 powerful tool o
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Coincident Peaks

An electrical customer's coincident peak (CP) is Example Coincident Peak
their demand at the moment of the entire _
system's peak. =
= 1000
Systems levy transmission surcharges via CP %
electrical rates to reduce system peaks. w900
Also known as Triads, Average Peak Cold Spell. 125 . -
Originatesin French, UK power systems. Used S 10.0 |
in many US systems; being considered in CAISO E . E
@ :
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Coincident Peaks

e CPrateroughly 100x more than normal time-
of-use rates

e Aconsumer's CP isrecorded on a monthly
basis

* At the end of the year, CP charges are paid

Consumers participatein exchange for
discounted time-of-use rates at all other times---

breaks out long term expansion costs.

Goalis to curtail consumer demand at peaks

Example Coincident Peak
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Coincident Peaks

4 MW consumer paying average ERCOT
wholesale prices (540/MWh), roughly
$1.4 millionin electricity costs per
working year,5300k of which per year to
consume electricity at CP hour

Consumers are incentivized to curtail
demand during the moment of the CP

System (MW)

Example Coincident Peak
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MW

Current Solutions: Variations

* Seasonal: UK, PIM, DEOK, winter ACS
* Monthly: ERCOT 4-CP, CAISO 12-CP
* Annually:"Peak Load Pricing" (Boiteux, 1949)

Total power demand in the Texas electrical market (2017)
70000

= Hurricane Harvey hits Houston Met. Area
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MW

Current Solutions: Variations

Seasonal: UK, PIM, DEOK, winter ACS Assumption #1:
Monthly: ERCOT 4-CP, CAISO 12-CP 1-CP pricing hour over a known, finite time
Annually:"Peak Load Pricing" (Boiteux, 1949) horizon

Total power demand in the Texas electrical market (2017)

70000 =—— Hurricane Harvey hits Houston Met. Area
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Current Solutions

Operators broadcastsignals, e.g. Fort Collins
PUD:

e Sends out signals about 10 days out of month

e Signalscan come with less than one hour
lead time, can last multiple hours

e Customers know when CP's should occur, e.g.
hot day, afternoon

Too many signals, still hard to predict rare events

Coincident Peak
Warning Signals

Utilities/distributors

Large consumers



# of occurences

Coincident Peak Timing

DEOK 24 hour ahead forecast error DEOK 24 hour ahead forecast error
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# of occurences

Assumption #2:

CO' n Cld ent Pea k TI m I ng Noise in the system is Gaus;ian,O mean

DEOK 24 hour ahead forecast error DEOK 24 hour ahead forecast error
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Current Solution: Operator Perspective

Forecast error is stationary, variance is not, even across
matching times

5.00 - means
Optimize binary peak/no-peak signal timing against S 475 — binary signal
forecast + scenario generation TR
@ 400 4
3.75 1
i N i 2
L 1 (i) 0O 350
minimize | — E max {Xt —1[t] - m} 525
teT N < t . . . . .
_ =1 _ 0 5 10 15 20

Hour of day

1 GW of DR services for 4 hours

subject to Z 1t] <S
t



Flexible Demand Response

Continuoussignals based on estimated curtailment budget

L 1 (i)
minimize N Zl max {Xt — mt}
1=

T
subject to Z me < M
t=1

mt>0

means ~—

—— linear signal

0 5 10 15 20
Hour of day

4 GWh total of DR services




Predicting Coincident Peaks

Can we do better than optimizing over Monte Carlo? (i.e. CDF of hourly power consumption
is more data going to help us?) ERCOT 2017
1.0
System operatorsare constrained to sending out early £ 0.81
. =
signals (> 24 hours) E 0.6
1l
Predicting a rare binary events hard, hedge our bets? 2 0.4
1]
202
Replace strict max operatorwith cumulative distribution 00
function 30000 40000 50000 60000 70000
MW (hourly)
* =
Xc-[¢* = argmaxs, EN)  CDF(x) = P(X < x)

cel

1: "Coincident Peak Prediction Using a Feed-Forward Neural Network" CP Dowling, D Kirschen, B Zhang - 2018 IEEE Global Conference on Signal and Information Processing, 2018
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Predicting Coincident Peaks

* Trainasimple, feedforward NN to predict CDF output of next 24 hours system demands
* Exponentially weighted L1 loss

1 GDF(St_|_1) >

F(SH—:{) = )
0 otherwise
0.81
0.8
0.7
- Training data: _ 07
weather, transmission, 2 06 = 08
hourly demand g ' e
ERCOT 2010-2016 EJJ.E g
= £ 0.41
& 04 Fr = Fn
- Test data: ERCOT 2017 A 0.3 A
037 — Fhisl‘ 07 - Fhi.'sl‘ ~.1.1--
086 08 00 002 004 006 008 086 083 00 002 004 006 0.8

CDF threshold CDF threshold



Predicting Coincident Peaks

Hypothetical business

Curtail demand linearly up to some
budget

Some traction to be gained
predicting system peaks --- let's take
a more principled approach

21000.0 1
20000.0
19000.0 1

fy

= 18000.0 -

S
T:u 1700001 _ _ No pesficter
S 16000.0 { === Perfect predictor
< 15000.0 - Fon
140000 -\
13000.0 - . . . _
0.9 0.02 0.04 0.96 0.98 1.0

¥

CDF Curtailment Threshold



Small Consumer Perpsective
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Naive Solution

lgnore system noise; amortize

coincident peak costs across all
time periods

0=T-g'(x) — TepX



Current Solution: Small Consumer Perspective

Responding to operator signals

40% CP consumers in ERCOT <10 MW (1
STD of forecast error in 100's of MW)

Consumer's CP timing determined by
system noise (forecast is known)
independent of their power demand at any
time




Core Assumptions

1. Single peak over known finite time period
(No averaging of multiple peaks/time periods)

2. System noise is Gaussian, corresponding to forecast error

R Z g(Xt) — Tep {XCH Ic” = argmax sc}

t=1 cel



Probability of a Coincident Peak

Can do better than optimizing over Monte Carlo. Can we do better than trying to forecast CDF and
arbitrarily hedging?

We know forecast error is a unimodal distribution, then probability of a peak directly:

pt := P(sy1is peak for all Tlsy, sy, ..., s¢t)

1

p: = P(t + lis max of anyT — t) - P(any nextT —t > s,,) = ﬁ(l — P(s < 5m) T V)




Proposed Solution: Small Consumer Perspective

* No ramping constraints * Ramping constraints
* Dynamic Programming e Approximate dynamic programming
« Optimal strategy * Near-optimal strategy
maximize [E[Rt] maximize [E[Rt]
Xy s XDguoes XT LG < T XT
subject to x; € [0, X] subject to  x; € [0,X]

Xy € [}(t_l — 6, Xt—1 + 5]

2: "Mitigation of Coincident Peak Charges via Approximate Dynamic Programming" CP Dowling, B Zhang - IEEE Conference on Decision and Control, 2019 (to appear)



Dynamic Programming

Optimize going backwardsin time, lett=T-1

Es. [R] = Es, Z g(Xt) + g(XT) — Tep{Xex [c* = argmax]s¢]} (1)
t=1,..T—1 cel
= ) g(x) +&(x1) — Tep[(1 — pT)Xer + pTXT] (2)
t=1,...T—1

And we optimize w.r.t to x; . Continuingbackwards, we have that the optimal play for any tis x, such that

0 =g'(x) — TepPt



Adding Ramping Constraints

If we add a ramping constraint X; € [xt_l — 0, %X¢—_1 + 5] then we have that,

/

Xt solves 0 = g"(xt) — Tep Pt
The optimal xf S [xt_l — 0, X¢—1 + 5]

oL /
and minimizes |)<T —X—*E|

E[RT] = K, [g(xl) — TepP1X1 + s, [g(XZ) — TepP2X2 ... T s [g(XT) — ﬂ_cpPTXTm



Approximate Dynamic Programming

Only way to find true optimalis grid search

At each time t, sample paths amongst ramp-constrained
options using known forecast error distribution

Typically this Monte Carlo path sampling procedure
chooses the best path

We use realizationsto train deterministic policy to choose
otpimal plays

Hidden Sigmoid
Activation Layer




Approximate Dynamic Programming

Utility function: g(x;) = 2log(1 + x?) :2 -
' N nn

For small number of rounds we can brute 30 WEE naive

force grid search to ensure a deterministic o 25

policy learned from Monte Carlo sampled g 2.0

paths approaches the true optimal solution .

0.5

0.0
T=2 T=23

Number of rounds



Approximate Dynamic Programming

7
—— MNaive optimal

& —— NN policy

Expected reward

2 4 B 8 10
Number of rounds

Value of x¢+ 1 to play

0.6

0.5

0.4

0.2

0.2

0.1

0.0

Policies for varying t, x1=0.3, T=4

—20 =15 -1.0 =05 00 0.5 1.0 15
Maximum observed noise thus far: s,

2.0



Small Consumer Perspective

- x~ N

T

=300 s e < ens
ceTl
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Large Consumer Perspective

N
D ; N0
ystem Noise > St = Xt + €t
J=1

T
t—1 _ ceT '



Current Solution: Large Consumer Perspective

Studies have suggested 4% peak reduction efficacy --- no
counterfactual data3

Many large consumers (distribution utilities) lack flexibility,
are highly correlated

* Increasingly diverse energy products in deregulated
markets

* Increasingly flexible grid; what happens when large
consumers try to learn an optimal policy for curtailment

during system peak?

3. Jay Zarnikau and Dan Thal, “The response of large industrial energy consumers to four coincident peak (4cp) transmission charges in the Texas (ERCOT) market,” Utilities Policy, 2013



Large Consumer Perspective

* Now a game theory setting
(Cournot competition);
consumer choices impact all
other consumers' rewards

* Not concave game
* No potential function

* Need to iteratively play game &
learn from results (a multi-agent

RL prOblem) Two player, two round game, fixed
choice of plays for opposing player

i

L

0.5
0.4

- 0.3
- 0.2
- 0.1
- 0.0
-—0.1
-0.2



Large Consumer: Policy Gradient

Initialize player policies: ¢ (", max{s,...st}, 541, T — t,1) = x";

Policy Gradient Procedure:

For epochs:

-Realize game sequence over T lgnoring non-concavity

-For each player compute: i =x) 41 (—

-Gradient decsenton new plays: [ (Qf)i (xﬁi))? o (SEEE)))



expected reward

Single Player Policy Gradient

No access to prediction of next round

All utility functions: 8t = |Dg(1 + xt)

Expected rewards during training with policy gradient

— player 1
070 4 naive optimal
2
0
%
065 1 <
w
e
)
] 8
060 ©
o
<
0.55 4
050 4
I

I I I I
0 10000 20000 30000 40000
epoch

I
50000




Single Player Policy Gradient

Noisy access to prediction of next round

. . . _ Fixed prediction
Expected rewards during training with policy gradient

2301 — player 1

375 - naive optimal ,. 10

2.00 1 T 08
=
% 175 [ 06
= 150 - - 0.4
% ~ 0.2
L 125 :
]

100 1 ~ 0.0

0.75 1

0.50 4

I I I I I
0 10000 20000 30000 40000 50000
epoch

Next value to play



Multi Player Policy Gradient

Identical utility functions

Two player expected rewards

0.65 4
T 060
i
=
U 055 -
D
+ 050
W
=3
q; 045
= player 1
0.40 - — playerz
— naive optimal
! I I I I !
0 10000 20000 30000 40000 S0000
epoch

expected reward

Two player expected rewards w/ prediction

14 -

12 A

10 A

0.8 1

0.6

0.4 1

0.2 1

— player 1
—— player 2
— naive optimal

I ! ! ! !
0 10000 20000 30000 40000 50000
epoch



Multiple Correlated Players

Player 1 independent, player 2 positively
correlated (i.e. stochastic function of)
player1

sz) = xiz) + « - Unif(0,1) - xi(:l)

Both playershave access to noisy
predictions

Large consumers are strongly correlated in
markets that currently use CP pricing

20 1

15 4

expected reward
(o]
=

0.0 1

Positively correlated player 2

— player 1
player 2

A

WM N A A

0 1000 2000 3000 4000 5000
epoch



Summary

1. Taking into account weather, grid transmission state, and demand
data improves coincident peak timing prediction.

2. Small players can use dynamic or approximate dynamic program to
optimally curtail using publically available data without peak
warning signals.

3. Large players can learn effective CP cost mitigation strategies ---
current work on determining existence of correlated equilibrium.
Without noise, naive solution is Nash equilibrium
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Coincident Peak: Order Statistics

A limited number of CP billing periods yeilds the best peak reduction regardless of budget
For a total budget M, reduce top K CP by K/M

X~N(0,1),T=40 ERCOT August 2018 Peak Days, T =40
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