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Estimated 30% of drivers on city streets searching for parking
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Curbside parking in Seattle

30% is a big
estimate

Is it correct? Can
we minimize it?
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Current Solutions

» Annual studies of parking resource performance


http://www.popsci.com/oslo-decides-to-ban-cars-from-city-center
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Current Solutions

» Annual studies of parking resource performance
» Demand-based pricing
» Mobile Applications: SFPark, Go Mobile PGH
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Current Solutions

v

Annual studies of parking resource performance

v

Demand-based pricing
Mobile Applications: SFPark, Go Mobile PGH

City: places like Oslo banning cars from city center (City)
http://www.popsci.com/
oslo-decides-to-ban-cars-from-city-center

v
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Occupancy

» How does the city measure parking resource performance?

# cars parked
# parking spaces

Occupancy: u =
» Once required manual counting, can estimate with digital
parking meters
» SDOT aims for an occupancy level in the range of 75%—85%

on an hourly basis
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11:00 AM
66% occupancy
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Occupancy

11:00 AM
66% occupancy
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11:45 AM
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11:30 AM
83% occupancy
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Occupancy

11:00 AM 11:30 AM
66% occupancy 83% occupancy
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83% occupancy
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83% hourly occupancy
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L Research Questions

Research Questions

Can we determine the amount of congestion drivers searching for
parking are responsible for?

If so, can we minimize the impact of this congestion while
maintaining high occupancy?

Let's model downtown curbside parking as a network of
interdependent queues.
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Contributions

> Wrote a simulator for
virtual drivers to
search for parking in
(github.com/
cpatdowling/
net-queue)

» We've shown that one
can optimize parking
availability subject to
constraints on
resulting congestion

Simulated occupancy levels in Belltown on a Monday morning
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Multi-server Queue

R

Arriving —
Customers Waiting
Customers
| Server 1 | Server 2 | Server 3 |
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Served Customers
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LPreliminaries

Bufferless Multi-server Queue

Rejected drivers
back to roadway

Arriving
Customers

| Server 1 | | Server 2 | | Server 3 |

Lol

Served Customers
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Block-face as a Queue

exogenous |
arrival _l_
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Block-face Queue Network
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Data Sources

Data: IDAX, Seattle Dept of Transportation and
data.seattle.gov
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Data Sources

Data: IDAX, Seattle Dept of Transportation and
data.seattle.gov

» block-face latitude/longitudes

» spaces per block (number of servers)

v

curbside parking transactions since 2012 at each block-face
(service times)

v

traffic volume by time of day on select arterials (superset of
drivers parking)


data.seattle.gov
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SDOT Data
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Figure 1: Distribution of
transactions by paid parking time.
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Figure 2: Distribution of parking
spaces per block-face in Belltown.
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Results

v

First we'll gain some intuition in perfectly uniform networks

v

We'll then analyze a real downtown network

v

Then we'll clearly state the optimization problem to minimize
congestion

And we'll conclude with a hypothetical optimization result

v
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Symmetric/Uniform Networks

v

Uniform occupancy

v

Equal in and out degree at
each queue

v

Equal service times

v

Equal number of spaces

Uniform search behavior

v
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Symmetric/Uniform Networks

» Total arrival rate to each queue
@ becomes solution to a polynomial
» Prove solution is unique, gives

probability queue is full

» Can solve for rejection rate along
each edge



Curbside Parking
LResults

Arrival Rates

Arrival rate as a function of occupancy, number of servers
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total arrival rate

0.5
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number of parking spaces (servers)

Figure 3: Arrival and rejection rate of vehicles is asymptotic in occupancy
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Belltown Occupancy
Occupancy not uniform: github.com/cpatdowling/demandviz
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github.com/cpatdowling/demandviz
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Calculating Congestion from Data

-Active parking
transactions

-Number of parking
spaces

Y

| Occupancy I
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Calculating Congestion from Data

-Mean/median

parking times

Y
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Calculating Congestion from Data

Total Arrival Prob. block is
Occupancy Rate full
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Calculating Congestion from Data

Oc Total Arrival Prob. block is Rejection
cupancy Rate full Rate
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Calculating Congestion from Data

-Total through traffic
volume
-Expected travel time

Congestion due to
parkers

oc Total Arrival Prob. block is Rejection
cupancy Rate full Rate
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Congestion Caused by Parkers

Travel Time
N w B (]

-

0.0 0.5 1.0 1.5 2.0 25 3.0
Flow Ratio (Q/c)

Figure 5: Approximation of travel Figure 6: Belltown arterials with
time delay curve for signalized road SDOT traffic volume data
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Congestion Caused by Parkers
1200

~——— Traffic Volume
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Time of day
Figure 7: 2nd and Blanchard in Belltown
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Congestion Caused by Parkers
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Congestion Optimization

maximize  Occupancy(p)
P (P-1)
subject to congestion along road i;i=1,...,m.
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» Seattle Parking rates by morning/evening, weekday/weekend

» San Francisco Parking rates by previous rate period’s
demand, to time of day on a block by block basis
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Price Control Strategies

» Seattle Parking rates by morning/evening, weekday/weekend

» San Francisco Parking rates by previous rate period’s
demand, to time of day on a block by block basis

price — desired demand level (occupancy) — queue probability of
being full — rate of drivers unable to find parking (congestion)

Everything is convex!



Curbside Parking
|—Results
LPrice Control

Price Control in Mission District

> Price elasticity
estimates from
SFPark pilot study
and companion 2013
study

VPO s

Figure 8: Curbside parking data in the
Mission District of SF
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Price Control in Mission District

Figure 8: Curbside parking data in the
Mission District of SF

> Price elasticity

estimates from
SFPark pilot study
and companion 2013
study

Gradient descent
subject to an
arbitrarily set
maximum allowable
rate of vehicles
unable to find parking
at each block-face.
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Price Control in Mission District
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Figure 9: Noon weekday occupancy levels and resulting traffic estimates

for Mission District, SF
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Price Control in Mission District

Noon weekday price changes to reduce rate of searching vehicles to
no more than 1 per 12 minutes: Mission District, SF

Price changes to reduce overall congestion
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Price Control in Mission District

Noon weekday controlled occupancy levels and resulting traffic
estimates for Mission District, SF
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day and location
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Concluding Remarks

» Sharpen the “30% of traffic” estimate: depends on time of
day and location

» Not pricing against congestion due to individual drivers
parking maneuvers
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LConclusion

Future Work

» Aiming for socially and politically actionable solutions to
congestion

» Data-driven analysis of surface-street congestion: time delay
due to volume

» How does location factor into price elasticity?



	Motivation
	Background
	Problem Statement
	Research Questions
	Preliminaries
	Block-face as a Queue
	As a Network of Queues

	Data
	Results
	Congestion
	Price Control

	Conclusion

