
1/35

Curbside Parking

Minimizing congestion due to drivers searching
for parking

Chase Dowling
in collaboration with Tanner Fiez, Lillian Ratliff, Baosen Zhang

University of Washington, Department of Electrical Engineering

May 4, 2017



2/35

Curbside Parking

Motivation

Curbside parking in Seattle

Image credit: Ana Arevalo, CBS, Washington DC

Estimated 30% of drivers on city streets searching for parking



2/35

Curbside Parking

Motivation

Curbside parking in Seattle

Image credit: Ana Arevalo, CBS, Washington DC

Estimated 30% of drivers on city streets searching for parking



3/35

Curbside Parking

Motivation

Curbside parking in Seattle

30% is a big
estimate

Is it correct? Can
we minimize it?



4/35

Curbside Parking

Motivation

Current Solutions

I Annual studies of parking resource performance

I Demand-based pricing

I Mobile Applications: SFPark, Go Mobile PGH

I City: places like Oslo banning cars from city center (City)
http://www.popsci.com/

oslo-decides-to-ban-cars-from-city-center
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Occupancy

I How does the city measure parking resource performance?

Occupancy: u = # cars parked
# parking spaces

I Once required manual counting, can estimate with digital
parking meters

I SDOT aims for an occupancy level in the range of 75%—85%
on an hourly basis
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Research Questions

Research Questions

Can we determine the amount of congestion drivers searching for
parking are responsible for?

If so, can we minimize the impact of this congestion while
maintaining high occupancy?

Let’s model downtown curbside parking as a network of
interdependent queues.
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Research Questions

Contributions

I Wrote a simulator for
virtual drivers to
search for parking in
(github.com/
cpatdowling/
net-queue)

I We’ve shown that one
can optimize parking
availability subject to
constraints on
resulting congestion

Simulated occupancy levels in Belltown on a Monday morning

github.com/cpatdowling/net-queue
github.com/cpatdowling/net-queue
github.com/cpatdowling/net-queue
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Block-face as a Queue
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As a Network of Queues

Block-face Queue Network
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Data Sources

Data: IDAX, Seattle Dept of Transportation and
data.seattle.gov

I block-face latitude/longitudes

I spaces per block (number of servers)

I curbside parking transactions since 2012 at each block-face
(service times)

I traffic volume by time of day on select arterials (superset of
drivers parking)

data.seattle.gov
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Data

SDOT Data

Figure 1: Distribution of
transactions by paid parking time.

Figure 2: Distribution of parking
spaces per block-face in Belltown.
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Results

I First we’ll gain some intuition in perfectly uniform networks

I We’ll then analyze a real downtown network

I Then we’ll clearly state the optimization problem to minimize
congestion

I And we’ll conclude with a hypothetical optimization result
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Results

Symmetric/Uniform Networks

I Uniform occupancy

I Equal in and out degree at
each queue

I Equal service times

I Equal number of spaces

I Uniform search behavior
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Results

Symmetric/Uniform Networks

I Total arrival rate to each queue
becomes solution to a polynomial

I Prove solution is unique, gives
probability queue is full

I Can solve for rejection rate along
each edge
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Results

Arrival Rates

Figure 3: Arrival and rejection rate of vehicles is asymptotic in occupancy



19/35

Curbside Parking

Results

Belltown Occupancy
Occupancy not uniform: github.com/cpatdowling/demandviz

Figure 4: A typical Monday at 11 AM in Belltown

github.com/cpatdowling/demandviz


20/35

Curbside Parking

Results

Congestion

Calculating Congestion from Data
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Congestion

Congestion Caused by Parkers

Figure 5: Approximation of travel
time delay curve for signalized road

Figure 6: Belltown arterials with
SDOT traffic volume data
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Congestion Caused by Parkers

Figure 7: 2nd and Blanchard in Belltown
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Price Control

Congestion Optimization

maximize
p

Occupancy(p)

subject to congestion along road i ; i = 1, . . . ,m.
(P-1)
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Price Control Strategies

I Seattle Parking rates by morning/evening, weekday/weekend

I San Francisco Parking rates by previous rate period’s
demand, to time of day on a block by block basis

price → desired demand level (occupancy) → queue probability of
being full → rate of drivers unable to find parking (congestion)

Everything is convex!
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Price Control in Mission District

Figure 8: Curbside parking data in the
Mission District of SF

I Price elasticity
estimates from
SFPark pilot study
and companion 2013
study

I Gradient descent
subject to an
arbitrarily set
maximum allowable
rate of vehicles
unable to find parking
at each block-face.
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Price Control in Mission District

Figure 9: Noon weekday occupancy levels and resulting traffic estimates
for Mission District, SF
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Price Control in Mission District

Noon weekday price changes to reduce rate of searching vehicles to
no more than 1 per 12 minutes: Mission District, SF
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Price Control

Price Control in Mission District

Noon weekday controlled occupancy levels and resulting traffic
estimates for Mission District, SF
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Concluding Remarks

I Sharpen the “30% of traffic” estimate: depends on time of
day and location

I Not pricing against congestion due to individual drivers
parking maneuvers
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I Aiming for socially and politically actionable solutions to
congestion

I Data-driven analysis of surface-street congestion: time delay
due to volume

I How does location factor into price elasticity?
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