
Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Combinatorial Hodge Theory, Conservation Laws,
and You

Chase Dowling, Baosen Zhang

University of Washington, Electrical Engineering

March 19, 2019

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Outline

Motivation

Background
Preliminaries
Hodge Decomposition and HodgeRank

Application
Data
Parking-Related Congestion Estimation
Congestion Source/Sink Identification

Future Work
Control Strategies for Parking Supply

Conclusion

Additional Material

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Motivation

Circling the block for parking

Google Maps can get us there,
but where do we park once we
get there? How does the city
effectively allocate parking
supply?

Lots of moving pieces: human
factors, non-linearities,
low-probability events, new
technologies — how can we
reliably simplify?

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Motivation

Problem Statement

One of our first questions: where are cars more likely and less likely
to find parking, and how does the net flow of traffic searching for
parking contribute to congestion?

In other words, where the sources and sinks for parking-related
congestion?

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Motivation

Motivation

In general, answering questions with network or graph-based data
incurs burdensome computational complexity.

In current work, we have large amounts of Seattle Department of
Transportation data regarding parking and congestion.

Presuming traffic flow is non-linear, how can we simplify, say,
optimizing for congestion?

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Motivation

Motivation

Solutions w.r.t data:

I Dimension reduction
I FFT (graph spectra), graphlets, graphons

I Make simplifying assumptions
I Linearize edge or vertex relationships, e.g. DC power flow

approximation

I Appeal to physical laws
I Cycle or vertex constraints, e.g. we know flow must be

conserved at a vertex

I Build a quantum computer
I Some assembly required

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Motivation

Motivation

Solutions w.r.t data:

I Dimension reduction
I FFT (graph spectra), graphlets, graphons

I Make simplifying assumptions
I Linearize edge or vertex relationships, e.g. DC power flow

approximation

I Appeal to physical laws
I Cycle or vertex constraints, e.g. we know flow must be

conserved at a vertex

I Build a quantum computer
I Some assembly required

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

I Appeal to physical laws
I Cycle or vertex constraints, e.g. we know flow must be

conserved at a vertex

Turns out this is a very general solution for many kinds of physical,
infrastructural networks subject to physical laws.

Namely, combinatorial Hodge Theory generalizes familiar
graph-theoretic results to simplifying notions from vector calculus
like conservation of energy (i.e. curl is 0 everywhere).

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

Combinatorial Hodge theory is a mouthful.

First notable application to address Condorcet’s Paradox as part of
a Netflix Prize entry1.

Condorcet’s Paradox says that, given three items A, B, and C
where a group of people are told to state their preference over, it is
possible to end up in a situation where:

A→ B → C → A

after aggregating preferences.

1Jiang, Xiaoye, et al. “Statistical ranking and combinatorial Hodge theory.”
Mathematical Programming 127.1 (2011): 203-244.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

Sums of flows in cycles should be
“conserved” in the sense that
A→ B → C → A doesn’t occur
as it does here.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

[Jiang 2011] showed how to
uniquely (up to orientation)
rectify Condorcet’s Paradox–i.e.
what is the “closest” ordering or
ranking of A, B, and C to the
original data that makes sense.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

[Jiang 2011] showed how to
uniquely (up to orientation)
rectify Condorcet’s Paradox–i.e.
what is the “closest” ordering or
ranking of A, B, and C to the
original data that makes sense.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

[Jiang 2011] showed how to
uniquely (up to orientation)
rectify Condorcet’s Paradox–i.e.
what is the “closest” ordering or
ranking of A, B, and C to the
original data that makes sense.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Contextual Background

[Jiang 2011] showed how to
uniquely (up to orientation)
rectify Condorcet’s Paradox–i.e.
what is the “closest” ordering or
ranking of A, B, and C to the
original data that makes sense.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Preliminaries

Relevant Work

More fundamental work supporting [Jiang 2011]—generalizing
vector calculus to graphs with Hodge Theory

I Friedman, Joel. ”Computing Betti numbers via combinatorial
Laplacians.” Algorithmica 21.4 (1998): 331-346.

I Hirani, Anil N., Kaushik Kalyanaraman, and Seth Watts.
”Least squares ranking on graphs.” arXiv preprint
arXiv:1011.1716 (2010).

I Lim, Lek-Heng. ”Hodge Laplacians on Graphs.” (2015)

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Hodge Decomposition and HodgeRank

Hodge Theory (In a nutshell)

Combinatorial hodge theory let’s me extend the Fundamental
Theorem of Vector Calculus (Helmholtz Decomposition) to
combinatorial structures like graphs.

This means I can uniquely tease out from flow data the pieces that
satisfy conservation laws (cycle or vertex-wise), and the pieces that
do not.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Hodge Decomposition and HodgeRank

Hodge Theory (In a nutshell)

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Hodge Decomposition and HodgeRank

Hodge Theory (In a nutshell)

Why bother?

Non-linear flow in graphs can be difficult to optimize according to
cost or capacity.

For example, in power grids, technical solutions to optimizing
non-linear AC-power flow are hard to extrapolate to arbitrary grid
(graph) topologies

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Background

Hodge Decomposition and HodgeRank

Hodge Theory (In a nutshell)

New tools like the Hodge decomposition (basis for HodgeRank,
which we demonstrate in the parking case) can be used to simplify
these non-linear flow problems.

HodgeRank utilizes the gradient flows of the decomposition to
rank vertices by how much flow is absorbed or generated—like
more general s-t flow graph

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Application

We’ll use HodgeRank to determine the relative sources and sinks
of the flow of parking-related congestion on surface streets in
downtown Seattle.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Parking-Related Congestion

We developed a parking-traffic simulator (as a network of
specialized queues) using Seattle Department of Transportation
(SDOT) data.

Ratliff, Lillian J., et al. “To Observe or Not to Observe: Queuing
Game Framework for Urban Parking.” arXiv preprint
arXiv:1603.08995 (2016).

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Parking-Related Congestion

We’ll simulate traffic caused by people searching for the coveted
curbside parking space.

I Cars looking for parking behind flow between vertices on edges

I Cars arriving to a vertex to find parking contribute to the
source/sink potential

I Cars “served” by a parking space become sinks

I We don’t need the individual vertex potential functions per se,
only need edge flows

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Data

SDOT Data

Downtown Seattle
neighborhood of
Belltown, average
streetside-parking
utilization during
the first quarter of
2015

Just about everyone
parks for 2 hours.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Data

SDOT Data

Number of
transactions for
paid parking
duration during first
quarter of 2015

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Parking-Related Congestion Estimation

Simulator: Blockface as a Queue

I Interblockface and
exogenous arrivals

I Exit after service
(parking)

I Reject from queue if
servers full

I Number of servers based
on parking data

I Reject to intersection
adjacent blockface

I Service times based on
parking data

I Servers (both sides of
street) lumped together

I Queues networked
together according to
road topology

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Application

Congestion Source/Sink Identification

Hodgerank of Simulated Traffic Flow

Blue pins:
sources of
traffic, while
red pins:
sinks.

Southeastern
blue pin is the
northern
extent of Pike
Market and a
major exit for
US-99

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Future Work

Control Strategies for Parking Supply

Control Strategies for Parking Supply

Incorporate time-of-day
dependent through-traffic rates

Incorporate exogenous factors
such as weather and major events

Reallocate parking according to
topologies that relieve congestion
on high volume roads

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Conclusion

Questions?

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Additional Material

Hodge Theory

The Hodge decomposition is a generalization of the fundamental
theorem of vector calculus or the Helmholtz decomposition:

Helmholtz Decomposition

Let F be a vector field on bounded O ⊆ R3, twice differentiable, F
can be decomposed into a curl-free (conservative) and
divergence-free (solenoidal) component:

F = −∇s +∇× v (1)

Where s is a scalar potential and v a vector potential. A curl-free
(∇F = 0) and divergence-free (∇× F = 0) vector field can still be
non-zero → solution to Laplace equation F = −∇s and ∇2s = 0.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Additional Material

Combinatorial Hodge Decomposition

I want to decompose a graph of “vector” flows into curl-free and
divergence-free components

Need div, grad, curl and all that

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Additional Material

Combinatorial Hodge Decomposition

Relevant coboundary (unweighted L2) mappings in graph clique
complex

grad : L2(V)→ L2(E)
grad s(i , j) = sj − si

(2)

curl : L2(E)→ L2(T)
curl X (i , j , k) = Xij + Xjk + Xki

(3)

div : L2(E)→ L2(V)
div X (i) =

∑
j Xij

(4)

the gradient operator is the adjoint of the negative divergence
operator

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Additional Material

Combinatorial Hodge Theory

(Combinatorial Hodge) Helmholtz Decomposition

Let G = (V ,E) be a graph and L1 be its graph Helmholtzian. The
space of edge flows, L2(E) admits an orthogonal decomposition:

L2(E) = im(grad)⊕ ker(L1)⊕ im(curl∗) (5)

1. im(grad): gradient flows (globally acyclic)

2. ker(L1): harmonic flows (locally acyclic)

3. im(curl∗): curl flows (locally cyclic)

1 and 2 form the curl-free component, 2 and 3 form the
divergence-free component.

Data-Intensive Computational Methods for Large-scale Infrastructure Systems

Additional Material

HodgeRank

min
X∈im(grad)

||X − Y ||22 = min
X∈im(grad)

∑
(i ,j)∈E

(Xij − Yij)
2 (6)

The minimum is calculated by orienting and vectorizing the edge
flows Y . The curl-free Hodge ranking, denote it r , on vertex
potentials s ∈ S can be calculated as:

r = −(div(E)⊗ grad(S))+grad(S) (7)

r = −L+
0 grad(S) (8)

	Motivation
	Background
	Preliminaries
	Hodge Decomposition and HodgeRank

	Application
	Data
	Parking-Related Congestion Estimation
	Congestion Source/Sink Identification

	Future Work
	Control Strategies for Parking Supply

	Conclusion
	Additional Material

