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Data:
Municipal and federal entities are 

collecting and exposing data on our 
civil infrastructure

Problem:
With the emergence of new technologies, 

how can we adapt our infrastructure 
without rebuilding from scratch?

Solution:
Apply statistical and machine 

learning techniques to improve 
existing engineered solutions
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Case studies in combining civil data 
with statistical and machine learning

1. Lots of opportunity
2. Growing # of examples where lack of domain 

knowledge leads to inactionable solutions in 
high reliability areas

3. Immature use in control tasks







Transportation: Modeling 
Congestion Due to Parking

1. SDOT has made city transportation data 
available.

2. How much congestion due to parking?
3. How can we control resulting congestion?



Curbside Parking in Belltown

1. Cars spend most of their time parked 
taking up space in the city

2. Economists have been trying to balance 
the cost of parking since the 1950’s

3. Price sensitivity traditionally measured 
by manual survey

4. Lots of new data
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SDOT Parking Transaction Data
Seattle Department of Transportation exposes date, time, location, and paid 
parking time for curbside parking by neighborhood

Occupancy over time at 5 different block-faces in Belltown
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Queueing Theory

Curbside parking with transaction data is 
amendable to analysis by queueing theory

Queue is a random process: the number of 
users currently in the queue

Given properties of the queue: arrival rate, 
service rate, number of servers, we can 
compute expected number of users in the 
queue, how long a user might expect to wait
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Queueing Network
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Arrival Rate
• Have hourly occupancy u from transaction data

• Want to compute total arrival rate y that attains observed occupancy 
in a network of M/GI/k/k queues with average parking time µ

Little's Law Total Arrival Rate

Dowling, C. P., Ratliff, L. J., & Zhang, B. (2019). Modeling Curbside Parking as a Network of Finite Capacity Queues. IEEE Transactions on Intelligent 
Transportation Systems.



Step 1:
Compute occupancy at 

block-face using 
transaction data
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Step 2:
Little's Law to compute 

total arrival rate that 
attains occupancy
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Step 3:
Use stationray dist. to 

determine rate of 
rejection
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Step 4:
Subtract out rejection 

rates from totals by 
street topology
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Step 5:
Compare rejection rates 

to roadway vehicles 
sensors
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Computing Congestion

First Ave. in Belltown
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Proportion Searching for Parking

1. Queueing network parameters 
learned from occupancy data along 
1st Ave

2. Compute rejection rates along block-
faces north and south-bound along 
1st Ave & block-faces on cross-
streets feeding into 1st Ave

3. Compare rejection rates along 1st to 
total through-traffic volume 
measured by SDOT roadway sensors
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Maximizing Occupancy

Data shows most congestion originating from a 
handful of high occupancy block-faces

Occupancy as function of concave price 
elasticity U(pi) is convex

Dowling, C., Fiez, T., Ratliff, L., & Zhang, B. (2017, December). Optimizing curbside parking resources subject to congestion constraints. In 2017 IEEE 56th 
Annual Conference on Decision and Control (CDC) (pp. 5080-5085). IEEE.



Transportation: Summary

1. Parking transaction data & queueing theory 
provide a structural model for curbside 
parking in cities.

2. Occupancy is convex in price; can maximize 
subject to congestion constraints

3. Provides a mechanistic means to evaluate 
policy changes where ML predictors would fall 
short.







Electrical Grids: Mitigating Coincident 
Peak Pricing

1. What is a Coincident Peak (CP) and why do we 
care?

2. What do system operators do with system data?
3. What can power customers do with system 

data?
4. Can system data tell us if CP Pricing is effective?



Coincident Peaks

An electrical customer's coincident 
peak (CP) is their demand at the 
moment of the entire system's 
peak.

Systems levy transmission 
surcharges via CP electrical rates to 
reduce system peaks.
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Coincident Peaks

CP rate roughly 100x more than 
normal time-of-use rates

Consumers participate in exchange 
for discounted time-of-use rates at 
all other times---breaks out long 
term expansion costs.

Goal is to curtail consumer demand 
at peaks
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Coincident Peaks

4 MW consumer paying average 
ERCOT wholesale prices ($40/MWh), 
roughly $1.4 million in electricity 
costs per working year, $300k of 
which per year to consume electricity 
at CP hour

Consumers are incentivized to curtail 
demand during the moment of the CP
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Variations
• Seasonal: UK, PJM, DEOK, winter ACS
• Monthly: ERCOT 4-CP, CAISO 12-CP
• Annually: "Peak Load Pricing" [Boiteux 1949]

Total hourly electrical demand in Texas, 2017

Assumption #1:
1-CP pricing hour over a known, finite time 

horizon
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Current Solutions

Operators broadcast signals, e.g. Fort 
Collins PUD:

• Sends out signals about 10 days out of 
month

• Signals can come with less than one 
hour lead time, can last multiple hours

• Customers know when CP's should 
occur, e.g. hot day, afternoon

Too many signals, still hard to predict rare, 
non-causal events Utilities/distributors Large consumers
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Core Assumptions

1. Single peak over known finite time period
(No averaging of multiple peaks/time periods)

2. System noise is Gaussian, corresponding to forecast error
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Predicting Coincident Peaks

Can we do better than optimizing over Monte 
Carlo? (i.e. is more data going to help us?)

System operators are constrained to sending 
out early signals ( > 24 hours)

Replace strict max operator with cumulative 
distribution function

Dowling, C. P., Kirschen, D., & Zhang, B. (2018, November). Coincident Peak Prediction Using a Feed-Forward Neural Network. In 2018 IEEE Global Conference on 
Signal and Information Processing (GlobalSIP) (pp. 912-916). IEEE.



1/8/2020 34



Predicting Coincident Peaks

CDF Curtailment Threshold

Hypothetical business, *very* 
simple NN as predictor

Curtail demand linearly up to some 
budget

Some traction to be gained 
predicting system peaks --- let's take 
a more principled approach
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Current Solution: Small Consumer Perspective

Responding to operator signals

40% CP consumers in ERCOT <10 MW

Consumer's CP timing determined by system noise 
(forecast is known) independent of their power 
demand at any time
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Small Consumer Perpsective

System Noise

Consumer Reward
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Naive Solution

Ignore system noise; amortize 
coincident peak costs across all time 

periods
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Proposed Solution: Small Consumer Perspective

• No ramping constraints

• Dynamic Programming

• Ramping constraints
• Approximate dynamic programming

Dowling, C.P., Zhang, B. Mitigation of Coincident Peak Charges via Approximate Dynamic Programming IEEE Conference on Decision and Control, 2019 (to 
appear)



Dynamic Programming

Optimize going backwards in time, let t = T-1

And we optimize w.r.t to xT . Continuing backwards, we have that the optimal play for 
any t is xt such that
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Adding Ramping Constraints

If we add a ramping constraint then we have that,

solves

and minimizes

The optimal
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Approximate Dynamic Programming

At each time t, sample paths amongst ramp-
constrained options using known forecast 
error distribution

Typically this Monte Carlo path sampling 
procedure chooses the best path

We use realizations to train deterministic 
policy to choose approximately optimal 
plays
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Approximate Dynamic Programming

Utility function:

For small number of rounds we can brute 
force grid search to ensure a deterministic 
policy learned from Monte Carlo sampled 
paths approaches the true optimal 
solution
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Approximate Dynamic Programming
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Small Consumer Perspective

System Noise

Consumer Reward
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Large Consumer Perspective

System Noise

Consumer Reward
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Current Solution: Large Consumer Perspective

Studies have suggested 4% peak reduction efficacy  
[Zarnikau 2013]

Many large consumers lack flexibility, are highly 
correlated

• Increasingly diverse energy products in deregulated 
markets

• Increasingly flexible grid; what happens when large 
consumers try to learn an optimal policy for 
curtailment during system peak?
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Large Consumer Perspective

1. Now a game theory setting (Cournot 
competition); consumer choices impact 
all other consumers' rewards

2. Not concave game

3. No obvious potential function

4. Need to iteratively play game & learn 
from results (a multi-agent RL problem)

Two player, two round game, fixed 
choice of plays for opposing player
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Large Consumer: Guided Policy Gradient

Initialize player policies: 

For epochs:

-Realize game sequence over T

-For each player compute:

-Gradient descent on new plays:

Policy Gradient Procedure:

Ignoring non-concavity
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Single Player Guided Policy Gradient
No access to prediction of next round

All utility functions:
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Multi Player Guided Policy Gradient
Identical utility functions
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Multi-Player Guided Policy Gradient
Identical utility functions
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Multiple Correlated Players

• Player 1 independent, player 2 positively 
correlated (i.e. stochastic function of) player 1

• Both players have access to noisy predictions

• Large consumers are strongly correlated in 
markets that currently use CP pricing
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Electrical Grids: Summary

1. Simple machine learning methods can combine 
data sources to predict coincident peaks.

2. In an increasingly flexible grid, consumers are 
incentivized to respond to coincident peak price 
signals.

3. Coincident peak pricing games provide a 
mechanistic means to analyze pricing as grid 
flexibility evolves and predictors fail.







Buildings: Learning Transferable Fault 
Detectors

1. How is ML enabling energy management in 
buildings? What data is available?

2. Can we detect HVAC faults in an unsupervised 
setting.

3. The fault detector is transferred to deal with the 
scarcity of labeled data.



Smart Buildings

1. Smart-meters that can communicate with 
the home's electrical utility

2. Consumer power generation

3. On-site storage from home battery or 
electric vehicle

4. Energy-conserving behind the meter devices 
like programmable thermostats and 
occupancy-based home energy management
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Modeling HVAC Systems

Power generation

Outside temperature

Inside temperature

Humidity

Inputs:

Outputs:

Power demandState Transition Model
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Fault Detection

Dowling, C.P., Zhang, B. Transfer Learning for HVAC System Fault Detection American Control Conference (2020) (in review)

When something breaks in the HVAC system, A is no 
longer an accurate model, two probabilities:

Operational Faulty

Matrix normal prior on to derive a classification rule: 



Naïve Fault Detection

The classifier does not depend on the modality of 
the fault, only on the true state transition model 
A

As A and B diverge, classification accuracy increases

Normal Operations

Faulty Operations
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Transfer Learning Lots of sensor data Limited sensor data

Transfer learning has been used 
successfully in things like image 
classification

Buildings have the same 
thermodynamic properties

Here we'll learn a model A on a 
building with lots of sensor data, and 
for a building with less sensor data, 
use model A as a starting point
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Transfer Learning

Systems Engineering Building, PNNL, Dong, J. et 
al. [2019] "Online Learning for Commercial 
Buildings"

• 2 story, ~25k sq ft office building
• Dry, arid climate in Eastern Washington

• 3-story, ~50k sq ft office building
• Cool, wet climate in Seattle

Simulated Building Real Building

Learn model A with lots of samples Weighted LS Learn model C using A as starting point
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Transfering Fault Detection
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Loss of Model C on real building
Classification performance 
trained on 2 weeks of data



Buildings: Summary

1. Machine learning methods can be used to 
detect faults in HVAC systems

2. Many, many buildings do not have access to 
large amounts of labeled sensor data to train ML 
models

3. Transfer learning using a Bayesian classifier can 
be used to learn ML models for buildings with 
access to limited, unlabeled sensor data



Future Work

• SDOT taking over curbside parking research to 
analyze price effects

• Continuing electrical market and HVAC system 
modeling work at PNNL starting in January
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Questions?
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Extra Slides: Curbside Parking

Rate of vehicle rejection as a function of 
observed occupancy in data

Unique positive root of polynomial for 
total arrival rate in network of M/GI/k/k 
queues

Probability of single block-full Rejection rate
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Delays Due To Congestion
We use Google Maps travel-time data along 1st Ave to learn a relationship between 
vehicle volume and travel time.
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Optimizing Occupancy/Congestion

Dowling, C., Fiez, T., Ratliff, L., & Zhang, B. (2017, December). Optimizing curbside parking resources subject to congestion constraints. In 2017 IEEE 56th 
Annual Conference on Decision and Control (CDC) (pp. 5080-5085). IEEE.1/8/2020 72



M/GI/k/k queue network assumptions

1. Transactions are representative of actual 
parking times [Qian 2017]

2. Inter-transaction start times exhibit 
exponential distribution --- network-wide inter-
arrival rate is Poisson

3. Little's Law does not depend on the 
distribution of service time, only stationarity

4. To satisfy hourly stationarity total network 
arrival rate is less than total network service 
rate and conditional dependence between 
block-face occupancies (desired assumption, 
independence not justified)
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Coincident Peak Timing

July 8, 2018

Assumption #2:
Noise in the system is Gaussian, 0 mean
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Coincident Peak: Order Statistics
A limited number of CP billing periods yeilds the best peak reduction regardless of budget

For a total budget M, reduce top K CP by K/M

X ~ N(0,1) , T = 40 ERCOT August 2018 Peak Days , T = 40
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Predicting Coincident Peaks

• Train a simple, feedforward NN to predict CDF output of next 24 hours system demands
• Exponentially weighted L1 loss

- Training data: 
weather, transmission, 

hourly demand 
ERCOT 2010-2016

- Test data: ERCOT 2017
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Probability of a Coincident Peak

Can do better than optimizing over Monte Carlo. Can we do better than trying to forecast CDF and 
arbitrarily hedging?

We know forecast error is a unimodal distribution, then probability of a peak directly:

If IID
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Kernel Regression

Least Squares Regression

Polynomial Basis
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Matrix Normal Prior

Click to add text
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Transferring more complex models
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Same procedure on 
simulated and real building

Transfer a simple NN with 
polynomial features via SGD 
initialized randomly 
(Scratch) or by the learned 
model A (Transfer)
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