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Curbside Parking

Motivation

Curbside parking in Seattle

Image credit: Ana Arevalo, CBS, Washington DC

Estimated 30% of drivers on city streets searching for parking1

1Inci, Eren. “A review of the economics of parking.” Economics of
Transportation 4.1 (2015): 50-63.
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Curbside Parking

Motivation

Engineering Problem

If 30% of traffic is searching for parking, can we adapt parking
strategies to mitigate costly congestion

Current solutions:

I Annual studies of parking resource performance

I Demand-based pricing

I Mobile Applications: SFPark, Go Mobile PGH

I Places like Oslo banning cars from city center or Barcelona
programmatically eliminating within certain sections

Solutions rely on empirical study and simulation to evaluate
resource performance
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Curbside Parking

Background

Occupancy

I How does the city measure parking resource performance?

Occupancy: u = # cars parked
# parking spaces

I Once required manual counting, can estimate with digital
parking meters

I SDOT aims for a per-block-face occupancy level in the range
of 75%—85% on an hourly basis

I Commonly accepted domain literature claims congestion
occurs at 100% occupancy
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Background

Occupancy

83% hourly occupancy
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Curbside Parking

Problem Statement

Research Questions

Research Questions

Can we determine the amount of congestion drivers searching for
parking are responsible for?

If so, can we minimize the impact of this congestion while
maintaining high occupancy?

Let’s model downtown curbside parking as a network of
interdependent queues.
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Problem Statement

Preliminaries

Block-face as a Queue
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Curbside Parking

Problem Statement

As a Network of Queues

Block-face Queue Network
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Problem Statement

Analysis of Single M/G/k/k

Properties of M/G/k/k Block-face Queue

There is some total arrival rate y = λ+ d · x that depends on
neighboring rejection rates
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Problem Statement

Analysis of Single M/G/k/k

Properties of M/G/k/k Queue

0 1

y

2 k

y

2 2

y y

µ 2µ kµ3µ

Stationary distribution solution to πQ = 0

π = 〈π0, π1, · · ·πk〉, πi = π−10 ·
(

y
µ

)i

i!

Probability queue is full: πk → y · πk = x
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Curbside Parking

Results

Results

I First we’ll gain some intuition in perfectly uniform networks

I We’ll then analyze a real downtown network

I Then we’ll state an optimization problem to minimize
congestion

I We’ll illustrate with a hypothetical optimization result

I And we’ll conclude with discussion on future work
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Curbside Parking

Results

Symmetric/Uniform Networks

I Assume the graph is d-regular

I Assume uniform occupancy, service
rate, number of servers

I Assume drivers search uniformly at
random

If occupancy is uniform, then rejections
are the same everywhere and we get a
conservation equation:

yπk = (λ+ d · x)πk = d · x (1)
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Curbside Parking

Results

Symmetric/Uniform Networks

k + 2 equations;
π, λ, x unknown

πQ = 0 (2a)∑
i

πi = 1 (2b)

(λ+ dx)πk = dx (2c)
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Results

Symmetric/Uniform Networks

(For simplicity, let µ = 1) Rearranging (2c), and substituting
formula for πk in terms of π0:

k − λ
k!

yk +
(k − 1)− λ

(k − 1)!
yk−1 + · · ·+ (1− λ)y − λ = 0 (3)

The sequence of sign changes undergoes only one sign change, so
by Descartes’ Rule of Signs, y is unique and positive. Further, by
application of the IVT, y > λ
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Results

Non-uniform Networks: Belltown

Figure 1: A typical Monday at 11 AM in Belltown
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Results

Non-uniform Networks: Belltown

Invalid assumptions for Belltown:

I Uniform occupancy

I Network is d-regular

I Uniform number of servers

Model assumptions we make:

I Drivers exhibit a uniform search strategy

I Adjacent blocks see similar occupancy levels as a result of
rejections from neighbors
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Results

Little’s Law

In typical queueing problems, one designs a queue around expected
arrival or service rates. We want to determine arrival rates from
some occupancy level u.

Little’s Law is an expression for time average number of customers
L in the system: L = γ · w .

Occupancy is simply normalized by
number of servers k:

L = y (1− πk) · 1

µ
(4)

u =
y

kµ
(1− πk) (5)
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Results

Little’s Law

(Again let µ = 1 for simplicity) Substituting formula for πk in
terms of π0 into (5), and rearranging, we again get polynomial in y .

k − uk

k!
yk + · · · (1− uk)y − uk = 0 (6)

By similar application of Descartes’ Rule of Signs, y is unique and
positive for u ∈ [0, 1).

Note, this version relies on occupancy, not conservation equation.
Use SDOT occupancy data directly.
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Results

Occupancy to Congestion

I Rejections asymptotic
in occupancy

I Can estimate
proportion of
through-traffic in
search of parking by
calculating for
rejection rates at
each block-face.
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Results

Congestion

Calculating Congestion from Data
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Results

Congestion

Proportion of Traffic Due to Parkers

We’ll compare the total
volume of rejections of
block-faces along an
arterial corridor to
through-traffic volume
data collected along the
arterial.
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Results

Congestion

Congestion Caused by Parkers

With linear time delay model. Further details in proceedings.
Average percent increase to delay on 1st Ave. in Belltown:
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Results

Price Control

Congestion Optimization

I We can take an observed occupancy level to a resulting level
of congestion

I Cities are already developing parking control policies to
minimize impact to congestion: e.g. time of day or locational
pricing

I Can we describe an optimization program that minimizes the
impact to congestion?
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Results

Price Control

Congestion Optimization

I Price is among our only control variables

I Design an optimal parking policy with congestion as specified
constraints—evening parking congestion may be acceptable
while rush-hour parking congestion may not.

maximize
p

Occupancy(p)

subject to congestion along road i , i = 1, . . . ,m

gi (pi ) ≤ x̄i

(P-1)
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Results

Price Control

Objective: Occupancy as Price

Figure 2: Curbside parking data in the
Mission District of SF

I Price elasticity
estimates from
SFPark pilot study
and companion 2013
study

I Use a linear price
elasticity function
U = 1− αp
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Results

Price Control

Constraints: Congestion g(p)

I Constraint values xi depend on an implicit mapping based on
eqn. (6) (Little’s Law substitution for arrival rate)

U(pi ) = ui (7)
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Results

Price Control

Constraints: Congestion g(p)

I Constraint values xi depend on an implicit mapping based on
eqn. (6) (Little’s Law substitution for arrival rate)

I Let f : u → y , the mapping takes an occupancy u to the
unique arrival rate y

f (U(pi )) = yi (8)



31/54

Curbside Parking

Results

Price Control

Constraints: Congestion g(p)

I Constraint values xi depend on an implicit mapping based on
eqn. (6) (Little’s Law substitution for arrival rate)

I Let f : u → y , the mapping takes an occupancy u to the
unique arrival rate y

f (U(pi )) · πk = xi (9)



32/54

Curbside Parking

Results

Price Control

Constraints: Congestion g(p)

I Constraint values xi depend on an implicit mapping based on
eqn. (6) (Little’s Law substitution for arrival rate)

I Let f : u → y , the mapping takes an occupancy u to the
unique arrival rate y

gi (pi ) := f (U(pi )) · πk = xi (10)
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Results

Price Control

Convexity of f

If we can show f is convex, we can find a unique solution (P-1)
with gradient descent. Eqn. 6 written implicity:

F (y , u) =
k − uk

k!
yk + · · · (1− uk)y − uk (11)

I By the implicit function theorem, (6) is continuously

differentiable, can write dky
duk

explicitly.

I Twice implicit differentiation gives d2y
du2
≥ 0. Then using

Gauss-Lucas dy
du > 0, so we have f is convex (proof sketch in

supplemental slides)
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Results

Price Control

Price Control in Mission District

Figure 3: Noon weekday occupancy levels and resulting traffic estimates
for Mission District, SF
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Results

Price Control

Price Control in Mission District

Noon weekday price changes to reduce rate of searching vehicles to
no more than 1 per 12 minutes: Mission District, SF
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Price Control in Mission District

Noon weekday controlled occupancy levels and resulting traffic
estimates for Mission District, SF
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Results

Price Control

Control Without Accurate Estimates of Price Elasticity

State of the art estimates of price elasticity are not necessarily
concave. Evaluate the limiting case of p →∞

Figure 4: Contour plot of historical
occupancy Figure 5: Clustered GMM centroids
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Results

Price Control

Control Without Accurate Estimates of Price Elasticity

Closing highest occupancy blocks versus closing random choices
yields largest impact on net-work wide rejections as a proportion of
total arrivals.
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Discussion

Discussion

What are we answering?

I Sharpen the “30% of
traffic” estimate: depends
on time of day and location

I Parking policy can be more
rigorously designed with
respect to end goal of
controlling congestion

What are we not answering?

I Not pricing against
congestion due to individual
drivers parking maneuvers

I Analyzing parking
performance on a moment
to moment basis, we’re
assuming the system can
achieve equilibrium
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Discussion

Assumptions

I System can achieve equilibrium

I Transaction data is
representative of occupancy

I Drivers search uniformly (and
legally)

I Price is only factor in parking
demand

I Haven’t assumed block-faces
are probabilistically
independent of one another

I No need to specify service-time
distribution

I Exogenous arrivals are Poisson
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Discussion

Future Work

Open questions in parking research:
I Price discrimination due to:

1. Garage/lot market power
2. Maximum parking time
3. Distance to popular destinations

I Effect of parking information systems on locational demand
(decision to drive before leaving)

I Emerging effect of ride-sharing services—how will future
curbside parking resources be most effectively utilized?
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Discussion

Future Work

How we’re tackling these
problems:

I Building a structural model
around data that’s currently
available.

I Aiming to enable socially
and politically actionable
solutions to congestion

Credit: Tanner Fiez, UW EE
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Conclusion

Concluding Remarks

I Black-box ML solutions may not be sufficient to adapt aging
infrastructure and related policies to emerging technologies
(distributed generation, autonomous vehicles)

I We want to combine structural models from which control
policy can be evaluated, with the naive data-analysis benefits
of ML
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Conclusion

Conclusion

Questions?
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Conclusion

Data Sources

Data: IDAX, Seattle Dept of Transportation and
data.seattle.gov

I block-face latitude/longitudes

I spaces per block (number of servers)

I curbside parking transactions since 2012 at each block-face
(service times)

I traffic volume by time of day on select arterials (superset of
drivers parking)

data.seattle.gov
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Conclusion

SDOT Data

Figure 6: Distribution of
transactions by paid parking time.

Figure 7: Distribution of parking
spaces per block-face in Belltown.
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Conclusion

Proportion of Traffic Due to Parkers

What is the time-delay impact to through-traffic?
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Conclusion

Calculating Congestion from Data
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Conclusion

Congestion Caused by Parkers

Figure 8: Estimates of travel time
delay curve for measured volume
versus historical delay

Figure 9: Belltown arterials with
SDOT traffic volume data
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Conclusion

Congestion Caused by Parkers

Figure 10: Estimates of travel time
delay curve for measured volume
versus historical delay

T : volume of cars→
expected delay

Percent increase in delay:

T (Ntotal)
T (Ntotal−Nparking)

− 1
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Conclusion

Proof Sketch: Convexity of f

Let x = ku. Then we can think of (6) as

F (y , x) = ( x
k! −

1
(k−1)!)y

k + · · ·+ ( x
2! − 1)y2 + (x − 1)y + x (12)

y ′ = −DxF · (DyF )−1 (13)

and, by Quotient Rule:

y ′′ =
DxF · (D2

yF · y ′ + Dx ,yF )− DyF · Dy ,xF · y ′

(DyF )2
(14)
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Conclusion

Proof Sketch: Convexity of f

Substituting in y ′ for the mixed partials, showing y ′′ boils down to
showing

D2
yF · y ′ + 2Dy ,xF ≥ 0 (15)

Relying on the fact that (x , y) are a pair such that F (x , y) = 0, we
get that

D2
yF · y ′ + 2Dy ,xF ≥ y ′F (x , y) = 0 (16)
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Conclusion

Proof Sketch: Convexity of f

We still need to show y ′ > 0.
By Gauss-Lucas (the roots of a polynomial are contained in the
convex hull of the roots of its derivative), for fixed x all real parts
of the roots of DyF are less than the root of F (x , y). Since
DyF → −∞ as y →∞, at F (x , y) = 0. Recall we have that:

y ′ = −DxF · (DyF )−1 (17)

Since DyF ≤ 0 and since DxF > 0, y ′ > 0
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Conclusion

Future Work

What assumptions can we further address?

I Utilizing existing work on accurate estimation of occupancy
from transaction data

I Incorporate factor analysis of location into parking
demand/elasticity (hospital vs shopping mall)

I Simulate equillibrium in real downtown network and compare
to numerical method

I Incorporate driver search behavior
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