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Smart Buildings

1. New buildings with smarter HVAC systems; streaming lots of
performance data

2. Performance can be used to improve HVAC system
efficiency w/ statistical and machine learning tools

3. Deployment of these tools require lots of ground truth data,
most buildings are old and lack such data

4. Transfer learning can address this shortcoming: learn
verifiable model on building with lots of data, use a small
amount of data from a target building to transfer the model,
rather than learning a new one from scratch
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Modeling HVAC Systems

Inputs: S1,52,...5T
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Outputs: X2, X3, ... XT41




Fault Detection

When something breaks in the HVAC system, A is no
longer an accurate model, two probabilities:

Operational Faulty
P(xt11|A, st) P(xt11|A, st)

Matrix normal prior with column-wise covariance
on A gives Neyman-Pearson Classifier:
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Transfer Learning

Simulated Building

e 3-story, ~50k sq ft office building
* Cool, wet climate in Seattle

Learn model A with lots of samples
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Real Building

* 2 story, ~25k sq ft office building
* Dry, arid climate in Eastern Washington

Weighted LS Learn model C using A as starting point

Systems Engineering Building, PNNL, Dong, J. et
al. [2019] "Online Learning for Commercial
Buildings"
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Transfering Fault Detection
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